Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Soc Nephrol ; 32(10): 2634-2651, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34261756

RESUMO

BACKGROUND: Rare variants in gene coding regions likely have a greater impact on disease-related phenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of ESKD in individuals with type 1 diabetes at advanced kidney disease stage. METHODS: Gene-based exome array analyses of 15,449 genes in five large incidence cohorts of individuals with type 1 diabetes and proteinuria were analyzed for survival time to ESKD, testing the top gene in a sixth cohort (n=2372/1115 events all cohorts) and replicating in two retrospective case-control studies (n=1072 cases, 752 controls). Deep resequencing of the top associated gene in five cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. RESULTS: Protein coding variants in the hydroxysteroid 17-ß dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (n=4196; P value=3.3 × 10-7). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other CKD-associated renal pathologies. CONCLUSIONS: HSD17B14 gene is mechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Nefropatias Diabéticas/genética , Falência Renal Crônica/genética , Adulto , Animais , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Exoma , Feminino , Expressão Gênica , Variação Genética , Humanos , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Túbulos Renais Proximais/enzimologia , Masculino , Camundongos , Pessoa de Meia-Idade , Elementos Estruturais de Proteínas/genética , Traumatismo por Reperfusão/complicações , Estudos Retrospectivos , Taxa de Sobrevida
2.
Mol Biol Evol ; 37(9): 2711-2726, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302382

RESUMO

For evaluating the deepest evolutionary relationships among proteins, sequence similarity is too low for application of sequence-based homology search or phylogenetic methods. In such cases, comparison of protein structures, which are often better conserved than sequences, may provide an alternative means of uncovering deep evolutionary signal. Although major protein structure databases such as SCOP and CATH hierarchically group protein structures, they do not describe the specific evolutionary relationships within a hierarchical level. Structural phylogenies have the potential to fill this gap. However, it is difficult to assess evolutionary relationships derived from structural phylogenies without some means of assessing confidence in such trees. We therefore address two shortcomings in the application of structural data to deep phylogeny. First, we examine whether phylogenies derived from pairwise structural comparisons are sensitive to differences in protein length and shape. We find that structural phylogenetics is best employed where structures have very similar lengths, and that shape fluctuations generated during molecular dynamics simulations impact pairwise comparisons, but not so drastically as to eliminate evolutionary signal. Second, we address the absence of statistical support for structural phylogeny. We present a method for assessing confidence in a structural phylogeny using shape fluctuations generated via molecular dynamics or Monte Carlo simulations of proteins. Our approach will aid the evolutionary reconstruction of relationships across structurally defined protein superfamilies. With the Protein Data Bank now containing in excess of 158,000 entries (December 2019), we predict that structural phylogenetics will become a useful tool for ordering the protein universe.


Assuntos
Evolução Molecular , Técnicas Genéticas , Filogenia , Elementos Estruturais de Proteínas/genética , Simulação de Dinâmica Molecular , Método de Monte Carlo
3.
J Comput Biol ; 27(5): 709-717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31502861

RESUMO

Based on matrix completion algorithm, we proposed a simple method to recover the missing regions in the X-ray crystal structures using the corresponding nuclear magnetic resonance (NMR) measurement data for the proteins with both X-ray and NMR experimental data deposited in Protein Data Bank (PDB). By selecting 10 test proteins deposited in PDB and comparing with the standard MODELLER results from the root-mean-square deviation and MolProbity aspects, we validated that our method can provide a better protein structure model, which combines both X-ray crystallographic structure data and NMR data together than MODELLER algorithm. This method is particularly useful for building the initial structures in Molecular Dynamics when studying the protein folding process.


Assuntos
Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas/ultraestrutura , Cristalografia por Raios X , Bases de Dados de Proteínas , Elementos Estruturais de Proteínas/genética , Proteínas/genética
4.
PLoS Pathog ; 14(11): e1007451, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30440046

RESUMO

The C-terminal region of the minor structural protein of potato leafroll virus (PLRV), known as the readthrough protein (RTP), is involved in efficient virus movement, tissue tropism and symptom development. Analysis of numerous C-terminal deletions identified a five-amino acid motif that is required for RTP function. A PLRV mutant expressing RTP with these five amino acids deleted (Δ5aa-RTP) was compromised in systemic infection and symptom expression. Although the Δ5aa-RTP mutant was able to move long distance, limited infection foci were observed in systemically infected leaves suggesting that these five amino acids regulate virus phloem loading in the inoculated leaves and/or unloading into the systemically infected tissues. The 5aa deletion did not alter the efficiency of RTP translation, nor impair RTP self-interaction or its interaction with P17, the virus movement protein. However, the deletion did alter the subcellular localization of RTP. When co-expressed with a PLRV infectious clone, a GFP tagged wild-type RTP was localized to discontinuous punctate spots along the cell periphery and was associated with plasmodesmata, although localization was dependent upon the developmental stage of the plant tissue. In contrast, the Δ5aa-RTP-GFP aggregated in the cytoplasm. Structural modeling indicated that the 5aa deletion would be expected to perturb an α-helix motif. Two of 30 plants infected with Δ5aa-RTP developed a wild-type virus infection phenotype ten weeks post-inoculation. Analysis of the virus population in these plants by deep sequencing identified a duplication of sequences adjacent to the deletion that were predicted to restore the α-helix motif. The subcellular distribution of the RTP is regulated by the 5-aa motif which is under strong selection pressure and in turn contributes to the efficient long distance movement of the virus and the induction of systemic symptoms.


Assuntos
Luteoviridae/genética , Luteoviridae/metabolismo , Sequência de Aminoácidos/genética , Aminoácidos Aromáticos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Luteovirus/genética , Mutação/genética , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Domínios Proteicos , Elementos Estruturais de Proteínas/genética , Deleção de Sequência/genética , Proteínas Virais/metabolismo
5.
Bioinformatics ; 34(12): 1981-1985, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29390068

RESUMO

Summary: Cysteine and histidine rich domains (CHORDs), implicated in immunity and disease resistance signaling in plants, and in development and signal transduction in muscles and tumorigenesis in animals, are seen to have a cylindrical three-dimensional structure stabilized by the tetrahedral chelation of two zinc ions. CHORDs are regarded as novel zinc-binding domains and classified independently in Pfam and ECOD. Our sequence and structure analysis reveals that both the zinc-binding sites in CHORD possess a zinc ribbon fold and are likely related to each other by duplication and circular permutation. Interestingly, we also detect an evolutionary relationship between each of the CHORD zinc fingers (ZFs) and the Bruton's tyrosine kinase (Btk)-type ZF of the zinc ribbon fold group. Btk_ZF is found in eukaryotic Tec kinase family proteins that are also implicated in signaling pathways in several lineages of hematopoietic cells involved in mammalian immunity. Our analysis suggests that the unique zinc-stabilized fold seen only in the CHORD and Btk_ZFs likely emerged specifically in eukaryotes to mediate diverse signaling pathways. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Evolução Molecular , Metaloproteínas/genética , Elementos Estruturais de Proteínas/genética , Zinco/química , Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cisteína , Eucariotos/genética , Eucariotos/metabolismo , Histidina , Humanos , Metaloproteínas/química , Metaloproteínas/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Zinco/metabolismo , Dedos de Zinco/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-29267235

RESUMO

Background: Telomere length (TL) maintenance plays an important role in bladder cancer (BC) and prognosis. However the manifold influence of everyday life exposures and genetic traits on leucocyte TL (LTL), is not fully elucidated. Methods: Within the framework of a hospital-based case (n = 96)/control (n = 94) study (all Caucasian males), we investigated the extent to which LTL and BC risk were modulated by genetic polymorphisms and environmental and occupational exposures. Data on lifetime smoking, alcohol and coffee drinking, dietary habits and occupational exposures, pointing to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs) were collected. Structural equation modelling (SEM) analysis appraised this complex relationships. Results: The SEM analysis indicates negative direct links (p < 0.05) between LTL with age, DNA adducts, alcohol and NAT2, and positive ones with coffee, MPO and XRCC3; and between BC risk (p < 0.01) with cigarettes, cumulative exposure to AAs and coffee, while are negative with LTL and age. There was evidence of indirect effects (p < 0.05) on BC risk, probably via LTL reduction, by age and NAT2 (positive link), MPO and XRCC3 (negative link). CONCLUSIONS: Our study supports evidence that LTL attrition is a critical event in BC. The new finding that LTL erosion depends on some preventable everyday life exposures genetically modulated, opens new perspectives in BC prevention.


Assuntos
Interação Gene-Ambiente , Predisposição Genética para Doença , Elementos Estruturais de Proteínas/genética , Medição de Risco/estatística & dados numéricos , Telômero/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Exposição Ambiental/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Fenótipo , Polimorfismo Genético , Fatores de Risco
7.
J Mol Evol ; 85(5-6): 219-233, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29177973

RESUMO

ATP synthase is a complex universal enzyme responsible for ATP synthesis across all kingdoms of life. The F-type ATP synthase has been suggested to have evolved from two functionally independent, catalytic (F1) and membrane bound (Fo), ancestral modules. While the modular evolution of the synthase is supported by studies indicating independent assembly of the two subunits, the presence of intermediate assembly products suggests a more complex evolutionary process. We analyzed the phylogenetic profiles of the human mitochondrial proteins and bacterial transcription units to gain additional insight into the evolution of the F-type ATP synthase complex. In this study, we report the presence of intermediary modules based on the phylogenetic profiles of the human mitochondrial proteins. The two main intermediary modules comprise the α3ß3 hexamer in the F1 and the c-subunit ring in the Fo. A comprehensive analysis of bacterial transcription units of F1Fo ATP synthase revealed that while a long and constant order of F1Fo ATP synthase genes exists in a majority of bacterial genomes, highly conserved combinations of separate transcription units are present among certain bacterial classes and phyla. Based on our findings, we propose a model that includes the involvement of multiple modules in the evolution of F1Fo ATP synthase. The central and peripheral stalk subunits provide a link for the integration of the F1/Fo modules.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/biossíntese , Evolução Molecular , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Filogenia , Domínios Proteicos , Elementos Estruturais de Proteínas/genética , Transcrição Gênica/genética
8.
Mol Microbiol ; 106(3): 351-366, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795788

RESUMO

RNase J, a prokaryotic 5'-3' exo/endoribonuclease, contributes to mRNA decay, rRNA maturation and post-transcriptional regulation. Yet the processive-exoribonucleolysis mechanism remains obscure. Here, we solved the first RNA-free and RNA-bound structures of an archaeal RNase J, and through intensive biochemical studies provided detailed mechanistic insights into the catalysis and processivity. Distinct dimerization/tetramerization patterns were observed for archaeal and bacterial RNase Js, and unique archaeal Loops I and II were found involved in RNA interaction. A hydrogen-bond-network was identified for the first time that assists catalysis by facilitating efficient proton transfer in the catalytic center. A conserved 5'-monophosphate-binding pocket that coordinates the RNA 5'-end ensures the 5'-monophosphate preferential exoribonucleolysis. To achieve exoribonucleolytic processivity, the 5'-monophosphate-binding pocket and nucleotide +4 binding site anchor RNA within the catalytic track; the 5'-capping residue Leu37 of the sandwich pocket coupled with the 5'-monophosphate-binding pocket are dedicated to translocating and controlling the RNA orientation for each exoribonucleolytic cycle. The processive-exoribonucleolysis mechanism was verified as conserved in bacterial RNase J and also exposes striking parallels with the non-homologous eukaryotic 5'-3' exoribonuclease, Xrn1. The findings in this work shed light on not only the molecular mechanism of the RNase J family, but also the evolutionary convergence of divergent exoribonucleases.


Assuntos
Methanomicrobiaceae/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Archaea/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Methanomicrobiaceae/genética , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Elementos Estruturais de Proteínas/genética , RNA/metabolismo , Estabilidade de RNA , Ribonucleases/genética
9.
Mol Biol Evol ; 34(8): 2085-2100, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453724

RESUMO

Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both "smooth" conformational changes and "catastrophic" conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence-structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof.


Assuntos
Proteínas/genética , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Simulação por Computador , Evolução Molecular , Modelos Genéticos , Modelos Moleculares , Conformação Proteica , Elementos Estruturais de Proteínas/genética , Proteínas/metabolismo , Análise de Sequência de Proteína/estatística & dados numéricos
10.
Mol Biol Evol ; 34(6): 1378-1390, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333346

RESUMO

For proteins with a single well-defined native state, protein 3Dstructure is a major determinant of sequence evolution. On the other hand, many proteins adopt multiple, distinct native structures under different conditions ("conformational switches"), yet the impact of such native state switching on protein evolution is not fully understood. Here, we performed a proteome-wide analysis of how protein structure impacts sequence evolution for protein conformational switches in Saccharomyces cerevisiae using pooled analysis of sites with similar packing or burial. We observed a strong linear relationship between residue evolutionary rate and residue burial for conformational switches. In addition, we found that conformational switches evolve significantly and consistently more slowly than proteins with a single native state, even after controlling for degree of residue burial or packing. Next, we focused on proteins that switch conformations upon molecular binding. We found that interfacial residues in these conformational switches evolve more slowly than interfacial residues in proteins with a single native state, and that the bound conformation is a better predictor for residue evolutionary rate than the unbound conformation. Our findings suggest that for conformational switches, the necessity to encode multiple distinct native structures under different conditions imposes strong evolutionary constraints on the entire protein, rather than just a few key residues. Our results provide new insights into the structure-evolution relationship of protein conformational switches.


Assuntos
Elementos Estruturais de Proteínas/genética , Proteínas/genética , Relação Estrutura-Atividade , Sequência de Aminoácidos/genética , Evolução Biológica , Simulação por Computador , Evolução Molecular , Modelos Moleculares , Ligação Proteica/genética , Conformação Proteica , Proteínas/metabolismo , Proteoma/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...